Application of Design of Experiments in Cost Estimating

Raj P. Ramaswamy and Perry K. Parendo 1998 Joint ISPA/SCEA Conference Toronto, Ontario, Canada June 16-19, 1998

Outline

- Purpose
- Problem Statement
- Objective
- Application
- Design Of Experiments Overview
- Case Study
- Conclusion
- Acknowledgments

Purpose

 Create an awareness of Design of Experiments as another tool for the cost community

Problem Statement

- Background
 - Sheet count method to determine engineering efforts
 - Wide variance between bid and actual
- Supporting Data
 - Design labor hour estimates are low (on the average).
 - The standard deviation of bids ranged from 30-40%. This was the value that the project was being managed.
 - Across the product lines (7) in our division, the hours/sheet (and hours/ft²) were a factor of 4 from largest to smallest.
 - Complexity is too variable to standardize process across product lines
- In addition to the above challenges, we still had to estimate sheets which is neither supportable nor a consistent process.

Objective

- Develop quick, accurate and reliable cost estimates
 - Simple process
 - Low level of training
 - Consistency
 - Audit trail
- This process will be used by:
 - Project Managers
 - For quick response during proposal efforts
 - Engineers
 - For making design decisions

Application

• Establish a parametric cost estimating model for budgetary mechanical engineering estimating hours using DOE.

Design Of Experiments Overview

- Design Of Experiments (DOE) Definition
- DOE Process
- DOE Tools / Approaches
- DOE Tool Comparison
- Example Full Factorial Matrix
- DOE Statistical Analysis Overview

DOE Definition

- DOE organizes the collection of data to determine the most statistically confident relationship between inputs and outputs.
 - Complexity of the relationship is chosen by the user.
- Key terms
 - Variables, inputs, key cost drivers, factors
 - Response, output, results
 - Levels, settings, conditions, limits
 - Equation, relationship, algorithm
 - One Factor at a Time (OFAT)

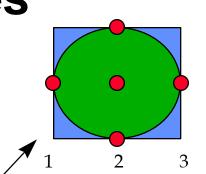
DOE Process

- Define goal need
- Define response(s) to measure progress to goal
- List all variables and down select to "key" variables using experience
- Select appropriate design matrix approach
- Select levels for variables
- Address tradeoffs between responses
- Perform test simulation
- Analyze results
- Discuss next step

DOE Tools / Approaches

- Factorial Designs
 - Full (2^k form)
 - Fractional (2^{k-p} form)
 - Taguchi maximum assumptions
- Advanced Designs (Response Surface Methods)
 - 3 level (not a 3^k form)
 - Box-Behnken, predictable to limits

1


2

3

4

5

- 5 level (composite with factorial as a basis)
 - Central Composite Design (CCD), predictable in only a portion of limits
- Optimization
 - Numerical
 - Graphical

Organizing the collection of data to determine the most statistically confident relationship

DOE Tool Comparison

OFAT or Taguchi typical output equation (main effects)

 $y = z + a^*A + b^*B + c^*C$

Factorial typical output equation (main and interactions)

More information (fine tuning) is achieved as progress to more rigorous tools

 $y = z + a^*A + b^*B + c^*C + d^*A^*B + e^*A^*C + f^*B^*C + g^*A^*B^*C$

Response Surface typical output equation (main, interactions, quadratic)

$$\begin{split} y &= z + a^*A + b^*B + c^*C + d[A]^2 + e[B]^2 + f[C]^2 + g[AB] + h[AC] + \\ &i[BC] + j[ABC] + p[A]^3 + q[B]^3 + r[C]^3 + s[A^2B] + t[AB^2] + u[A^2C] \\ &+ v[AC^2] + w[B^2C] + x[BC^2] \end{split}$$

Example Full Factorial Matrix

	Variable				Οι	ıtput	
Test #	Α	В	C	1	2	3	
1	-	-	-				
2	+	-	-				
3	-	+	-				
4	+	+	-				
5	-	-	+				
6	+	-	+				/
7	-	+	+		–		Ý
8	+	.	+				

to provide resultant equation with reasonably expected terms - 3 variables at 2 levels: 8 total tests (2³)

DOE Statistical Analysis Overview

- Purpose is for the user to determine a statistically valid equation for the output
 - F-Test on model
 - R² curve fit assessment
 - Prob > |t| for all variable terms
 - t value (outlier t) of test runs
 - Residual Analysis

If these are acceptable to the user, the final equation is valid for predictive usage.

Case Study

- Project Goal
- Response (Output)
- DOE Process Steps
- Cost Driver Identification
- Manufacturing Complexity Case
- Labor Hour Case
- Next Step
- Validation Results
- Result Comparison

Project Goal

- Perform accurate, consistent and reliable budgetary cost estimating hours in mechanical engineering department
- Utilize DOE as a tool to assist in this process

Response (Output)

- Mechanical engineering labor hours consists of:
 - Layout and design
 - Analysis
 - Detailing
 - Data package

DOE Process Steps

- Identify cost drivers
- Select appropriate DOE matrix for two cases
 - Case 1. manufacturing complexity
 - Case 2. labor sensitivity analysis
- Collect historic data and identify limits for key cost drivers
- Run the PRICE H model for the established test combinations to obtain the output
- Perform statistical analysis on DOE software

Assumes a calibrated PRICE H model

Cost Driver Identification

Labor hours

- Weight, manufacturing complexity, % of new design, design repeat, platform (level of specification), design effort, and engineering experience
- Manufacturing complexity
- # of parts, precision, assembly difficulty, process and material type, and platform
- This led to a two-tiered DOE approach
 - One DOE matrix for manufacturing complexity
 - One DOE matrix for labor hours

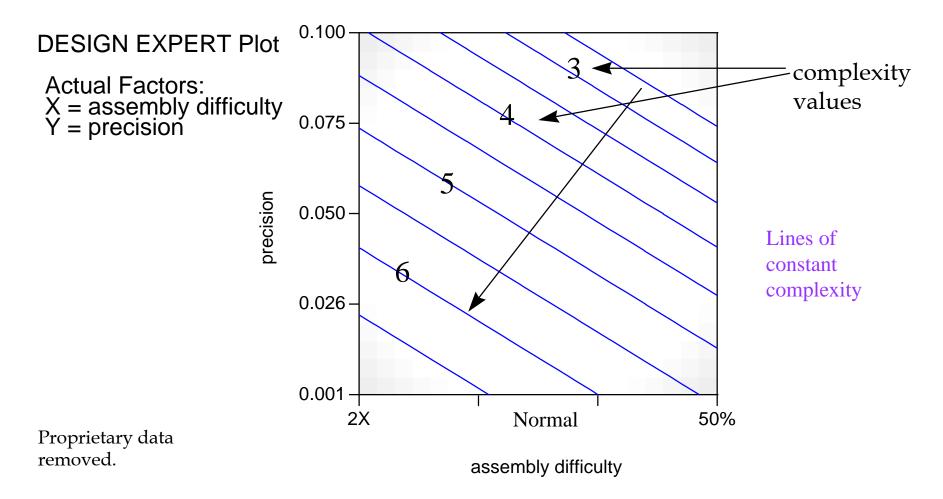
Manufacturing Complexity Case

- Manufacturing Complexity DOE
- Assembly Difficulty
- Manufacturing Complexity Chart

Manufacturing Complexity DOE

Cost		Most	
Driver	Low	Likely	High
# of parts	10	45	80
precision	.001	.050	.100
assembly difficulty*	А	В	С
machine / material	titanium	steel	aluminum
platform	com. ground	military ground	air / ground

Incorporate into CCD tool. Has 27 combinations versus the 3125 possible (5^5) .


> Precision and assembly difficulty dominate. These replace the complexity term in the labor equation if complexity is significant.

* defined on next page

Assembly Difficulty

- A: Assembly tolerance 2 times tougher than part tolerance
- B: Assembly tolerance same as part tolerance, most commonly used
- C: Assembly tolerance 50% less than part tolerance
 - As defined in PRICE-H

Manufacturing Complexity Chart

Labor Hour Case

- Labor Hour DOE
- Design Effort
- Labor Hour DOE Findings
- Response Surface of Labor Hours

Labor Hour DOE

Cost Driver	Low]	Most Likely	y High
weight	50	525	1000
mfg cplx	4	5	6
% new des	10%	45%	80%
design rep	0%	45%	90%
platform	1.0	1.3	1.6
design	A	В	С
effort*			
eng exp	extensive	normal	many new

* defined on next page

Incorporate into Box-

Has 57

Behnken tool.

combinations versus 2187

possible (3^7) .

All important - quadratic terms and interactions exist

Design Effort

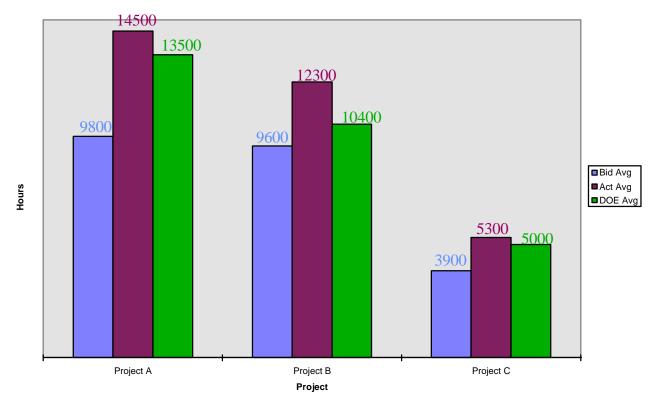
- A extensive mod to existing design
- B new design within established product line: existing state of the art
- C new design different from established product line: must develop new technology or material
 - As defined in PRICE-H

Labor Hour DOE Findings

- All variables (cost drivers) are statistically significant
- Labor Hours = f(Weight², New design², Design effort²)
- Weight interacts (has synergy) with
 - All cost drivers except engineering experience
- Manufacturing complexity interacts (has synergy) with
 - New design, design repeat, platform and design effort
- New design interacts (has synergy) with
 - Design repeat, platform and design effort

Together these items create the final equation for hours.

Response Surface of Labor Hours


Next Step

- The final equations are statistically valid.
- Create instructions to clearly define the process
- Validate DOE model with actual project data
 - Compare with PRICE H as a sanity check

Validation Results

- The DOE model followed the PRICE H runs (design and drafting hours) within a reasonable percentage (roughly 4%)
- Thus far, the DOE model follows the actual data rather well. When combining several estimates together, the comparison to actual was very close (within 7%).
- The standard deviation for the DOE model versus actuals is similar to the sheet count method.
- The validation effort is still in process.

Result Comparison

Comparison of Project Data

Project B has very small sample size

Conclusion

- Initial results show methodology works well after comparing to actuals from a few projects
- Will be folded into a larger mechanical engineering cost estimating process
- DOE analysis will be repeated periodically. This will update for the full PRICE H model calibrations.
- DOE is an applicable tool and is available for use.

Acknowledgments

- PRICE-H user manual
- Design-Expert software; Stat-Ease Corporation, Minneapolis Minnesota
- United Defense cost history data base
- Unal, Stanley and Lepsch; "Parametric Modeling Using Saturated Experimental Designs" ISPA Conference 1994
- United Defense support Michael Hoyne, John Revolinski and Roland Enno

Current Contact Information

- Perry Parendo
- 651-230-3861
- Perry@PerrysSolutions.com
- <u>www.PerrysSolutions.com</u>

